

### Regulator położenia dla układu dwumasowego oparty o metodę ADRC

**Bartłomiej Wicher** 

**10.05.2019** Seminarium ZSiEP

| Introdu | ction Mathematical model | Control structures | Simulation results | Conclusions |
|---------|--------------------------|--------------------|--------------------|-------------|
|         |                          | PLAN               |                    |             |
| 1.      | Wprowdzenie.             |                    |                    |             |
| 2.      | Model obiektu sterc      | wania.             |                    |             |
| 3.      | Układ regulacji poło     | żenia.             |                    |             |

- 4. Wyniki symulacji.
- 5. Podsumowanie i wnioski.





### **MODEL OBIEKTU STEROWANIA**

#### Conclusions

### Układ dwumasowy



NOTOR

$$J_{1}\dot{\omega}_{1} = T_{m} - T_{T}$$

$$J_{2}\dot{\omega}_{2} = T_{T} - T_{L}$$

$$T_{T} = k_{W} \left(\theta_{1} - \theta_{2}\right) + D_{W} \left(\omega_{1} - \omega_{2}\right)$$
(1)

 $\omega_1$  – motor speed,  $\omega_2$  – load speed,  $\theta_1$  – motor position,  $\theta_2$ –load position  $J_1$  – motor moment of intertia,  $J_2$  – load moment of inertia,  $k_W$  – stiffness coefficient,  $D_W$  – damping factor,  $\alpha$  – backlash width

# Introduction Mathematical model Control structures Simulation results Conclusions Introduction Model luzu Model luzu Image: Simulation results Image: Simulation results

Dislocation of the shafts ends  $\theta_d$  is the sum of the torsional angle  $\theta_s$  and the backlash width  $\theta_b$  within the backlash area ( $-\frac{1}{2}\alpha < \theta_d < \frac{1}{2}\alpha$ ).



$$\dot{\theta}_{b} = \begin{cases} \max\left(0, \ \dot{\theta}_{d} + \frac{K_{w}}{D_{w}}(\theta_{d} - \theta_{b})\right) & \text{if } \theta_{b} = -\frac{1}{2}\alpha \quad (m_{s} \leq 0) \\ \dot{\theta}_{d} + \frac{K_{w}}{D_{w}}(\theta_{d} - \theta_{b}) & \text{if } |\theta_{b}| < \frac{1}{2}\alpha \quad (m_{s} = 0) \\ \min\left(0, \ \dot{\theta}_{d} + \frac{K_{w}}{D_{w}}(\theta_{d} - \theta_{b})\right) & \text{if } \theta_{b} = \frac{1}{2}\alpha \quad (m_{s} \geq 0) \end{cases}$$

$$(2)$$

#### **Parametry modelu**

 Parametry odpowiadają parametrom stanowiska laboratoryjnego.

Introduction

- Struktura silnika może być traktowana jako bryła sztywna.
- Czujnik położenia nie wprowadza błędu.
- Pętla regulacji prądu oraz przekształtnik zostały uproszczone do obiektu inercyjnego oraz opóźnienia transportowego.
- Moment elektromagnetyczny silnika jest proporcjonalny to prądu.

#### Tab. 1: Parametry modelu

| Parameter          | Value      | Unit     |
|--------------------|------------|----------|
| J <sub>1</sub>     | 0.00162    | kg∙m²    |
| J <sub>2</sub>     | 0.006      | kg∙m²    |
| α                  | 0,1,2,5,10 | deg.     |
| k <sub>w</sub>     | 29.42      | Nm·s/rad |
| D <sub>w</sub>     | 0.01       | Nm/rad   |
| Ts (sampling time) | 10-4       | S        |

### **SYSTEM STEROWANIA**

# Introduction Mathematical model Control structures Simulation results Conclusions Control system block diagram



Fig. 1: Schemat blokowy układu regulacji położenia

Układ sterowania – opis matematyczny (1)

$$\begin{cases} J_{1}\dot{\omega}_{1} = k_{\varphi}i_{REF} - k_{w}\left(\theta_{1} - \theta_{2}\right) - D_{W}\left(\omega_{1} - \omega_{2}\right) \\ J_{2}\ddot{\theta}_{2} = k_{w}\left(\theta_{1} - \theta_{2}\right) + D_{W}\left(\omega_{1} - \omega_{2}\right) - T_{L} \end{cases}$$
(3)

Zmienne  $\omega_1$  oraz  $\Theta_1$  muszą zostać wyrugowane z układu (3)

$$\dot{\theta}_2 = b_0 i_{REF} + f \tag{4}$$

$$f = -\frac{k_W^2}{J_1 J_2} (\theta_1 - \theta_2) - \frac{D_W k_W}{J_1 J_2} (\omega_1 - \omega_2) + A$$
(5)

$$b_0 = \frac{k_W k_{\varphi}}{J_1 J_2} \tag{6}$$

$$A = -\frac{k_W}{J_2}\dot{\omega}_2 + \frac{D_W}{J_2}\ddot{\omega}_1 - \frac{D_W}{J_2}\ddot{\omega}_2 - \frac{1}{J_2}\ddot{T}_L$$
(7)

#### Introduction Mathematical model Control structure Simulation results Conclusions

### Układ sterowania – opis matematyczny (2)

Używając zapisu w przestrzeni zmiennych stanu:  $u=i_{REF}$ ,  $y=\Theta_2$  razem z dodatkowym (rozszerzonym) stanem  $x_5$ :

# IntroductionMathematical modelControl structureSimulation resultsConclusionsUkład sterowania – opis matematyczny (3)

$$\dot{z}_{1} = z_{2} + \beta_{1} (\theta_{2} - z_{1})$$

$$\dot{z}_{2} = z_{3} + \beta_{2} (\theta_{2} - z_{1})$$

$$\dot{z}_{3} = z_{4} + \beta_{3} (\theta_{2} - z_{1})$$

$$\dot{z}_{4} = z_{5} + \beta_{4} (\theta_{2} - z_{1}) + b_{0} i_{REF}$$

$$\dot{z}_{5} = \beta_{5} (\theta_{2} - z_{1})$$
(9)

Zmienna  $z_1$  estymuje  $\Theta_2$  natomiast  $z_5$  estymuje całkowite zakłócenie f. Stałe  $\beta_1, ..., \beta_5$  są wzmocnieniami obserwatora (met. lokalizacji biegunów)

$$\beta_k = \binom{n+1}{k} \omega_0^k \tag{10}$$

## Introduction Mathematical model Control structure Simulation results Conclusions Układ sterowania – opis matematyczny (4)

Równanie odsprzęgacza (Rejector):

$$u = \frac{u_0 - z_5}{b_0}$$
(11)

$$\ddot{\theta}_{2} = b_{0} \frac{u_{0} - z_{5}}{b_{0}} + f = u_{0} - z_{5} + f$$
(12)

W przypadku, gdy ESO poprawnie estymuje zakłócenie:

$$z_5 \approx f \tag{13}$$

Obiekt z punktu widzenia regulatora:

$$\ddot{\theta}_2 = u_0 \tag{14}$$

# IntroductionMathematical modelControl structureSimulation resultsConclusionsUkład sterowania – opis matematyczny (5)

Regulator PDD<sup>2</sup>D<sup>3</sup>:  
$$u_0 = k_P \left( \theta_{REF} - \theta_2 \right) - k_D \dot{\theta}_2 - k_{DD} \ddot{\theta}_2 - k_{DDD} \ddot{\theta}_2 \qquad (15)$$

Użycie estymowanych pochodnych zamiast różniczkowania sygnału położenia:

$$u_{0} = k_{P} \left( \theta_{REF} - \theta_{2} \right) - k_{D} z_{2} - k_{DD} z_{3} - k_{DDD} z_{4}$$
(16)

Wzmocnienia regulatora:

$$k_{i} = \binom{n}{i} \omega_{C}^{n-i} \begin{cases} k_{P} = k_{0} \\ k_{D} = k_{1} \\ k_{DD} = k_{2} \\ k_{DDD} = k_{3} \end{cases}$$
(17)

### WYNIKI SYMULACJI

### Scenariusze symulacyjne

- a) Odpowiedź na skokową zmianę wartości zadanej  $\theta_{\text{REF}} = \pi \text{rad w chwili t} = 0 \text{s},$
- b) odpowiedź na zewnętrzne zakłócenia w postaci skoku momentu obciążenia w stanie ustalonym: 3.6Nm między t = 0.4s a 0.8s,
- c) Odpowiedź na sygnał zadany w postaci rampy (1, 10 and 100rad/s) oraz w postaci sinusoidy (amplituda  $\pi$ , częstotliwość 2Hz) (bez momentu obciążającego),

## Introduction Mathematical model Control structures Simulation results Szerokość luzu 0<sup>0</sup> – odpowiedź skokowa

#### Położenie

### Prędkość

Conclusions



# Introduction Mathematical model Control structures Simulation results Conclusions Szerokość luzu 0<sup>0</sup> – odpowiedź skokowa Conclusions Conclusions

### Prąd zadany



### Szerokość luzu 0<sup>0</sup> – 10rad/s odpowiedź na sygnał rampowy

### Położenie



#### Położenie

### Prędkość



## Introduction Mathematical model Control structures Simulation results Szerokość luzu 5<sup>0</sup> – odpowiedź skokowa

#### Położenie

### Prędkość

Conclusions



# IntroductionMathematical modelControl structuresSimulation resultsConclusionsSzerokość luzu 5<sup>0</sup> – odpowiedź skokowa

### Prąd zadany



#### Położenie

#### Prędkość



# IntroductionMathematical modelControl structuresSimulation resultsConclusionsSzerokość luzu0°-sygnały sterujące, skok





# Introduction Mathematical model Control structures Simulation results Conclusions Szerokość luzu 5<sup>0</sup> – sygnały sterujące, skok Conclusions





# IntroductionMathematical modelControl structuresSimulation resultsConclusionsSzerokość luzu0° – sygnały sterujące, rampa





# IntroductionMathematical modelControl structuresSimulation resultsConclusionsSzerokość luzu0° – sygnały sterujące, sinus





### Wskaźniki jakości

**Control structures** 

1. Średni kwadrat błędu

$$MISE = \frac{1}{N} \sum_{i=1}^{N} \left( \theta_{REF} - \theta_2 \right)^2$$

2. Maksymalny względny uchyb regulacji po pojawieniu się obciążenia

**Mathematical model** 

$$\theta_2 D_A = \frac{\max\left(\left|\theta_{REF} - \theta_2\right|\right)}{\theta_{REF}} \bigg|_{T_L > 0} \cdot 100\%$$

**Simulation results** 

3. Maksymalne odchylenie po usunięciu obciążenia

$$\theta_2 D_R = \frac{\max\left(\left|\theta_{REF} - \theta_2\right|\right)}{\theta_{REF}} \left| \cdot 100\%\right|$$

4. Maksymalne przeregulowanie względne podczas rozruchu

$$\theta_2 O = \frac{\max\left(\left|\theta_{REF} - \theta_2\right|\right)}{\theta_{REF}} \left|_{\theta_2 > \theta_{REF}} \cdot 100\%\right|$$

# IntroductionMathematical modelControl structuresSimulation resultsConclusionsWskaźniki jakości – wymuszenie skokowe

Tab. 2: Wskaźniki jakości dla wymuszenia skokowego

| α<br>(deg.) | MISE<br>(rad²) | $\theta_2 O(\%)$ | $\theta_2 D_A$ (%) | $\theta_2 D_R(\%)$ |
|-------------|----------------|------------------|--------------------|--------------------|
| 0           | 0.3004         | 0.78             | 1.13               | 0.62               |
| 1           | 0.3013         | 2.94             | 1.39               | 0.90               |
| 2           | 0.3023         | 5.46             | 1.26               | 0.87               |
| 5           | 0.3061         | 10.01            | 0.00               | 0.90               |
| 10          | 0.3144         | 14.59            | 0.00               | 4.15               |

# Introduction Mathematical model Control structures Simulation results Conclusions Wskaźniki jakości – odpowiedź na sygnał rampowy

#### Tab. 3: Wskaźniki jakości dla sygnału zadanego w postaci rampy

| α      | 1rad/s                    |               | 10rad/s                     |               | <b>100rad/s</b>             |               |
|--------|---------------------------|---------------|-----------------------------|---------------|-----------------------------|---------------|
| (deg.) | MISE<br>·10 <sup>-4</sup> | $\sqrt{MISE}$ | MISE<br>(rad <sup>2</sup> ) | $\sqrt{MISE}$ | MISE<br>(rad <sup>2</sup> ) | $\sqrt{MISE}$ |
|        | (rad <sup>2</sup> )       | (rad)         |                             | (rad)         |                             | (rad)         |
| 0      | 6.94                      | 0.026         | 0.069                       | 0.263         | 6.943                       | 2.636         |
| 1      | 6.95                      | 0.026         | 0.069                       | 0.263         | 6.945                       | 2.635         |
| 2      | 6.98                      | 0.026         | 0.069                       | 0.263         | 6.947                       | 2.636         |
| 5      | 8.25                      | 0.029         | 0.069                       | 0.263         | 6.964                       | 2.639         |
| 10     | 38.25                     | 0.062         | 0.071                       | 0.267         | 7.002                       | 2.646         |

## IntroductionMathematical modelControl structuresSimulation resultsConclusionsWskaźniki jakości – odpowiedź na sygnał sinusoidalny

#### Tab. 4: Wskaźniki jakości dla sinusoidalnego sygnału zadanego

| α (deg.) | MISE (rad <sup>2</sup> ) | $\sqrt{MISE}(rad)$ |
|----------|--------------------------|--------------------|
| 0        | 0.5122                   | 0.7156             |
| 1        | 0.5122                   | 0.7156             |
| 2        | 0.5123                   | 0.7158             |
| 5        | 0.5165                   | 0.7187             |
| 10       | 0.5115                   | 0.7152             |

### Podsumowanie i wnioski

- W trakcie projektowania układu regulacji tylko współczynnik b<sub>0</sub> obiektu musi być znany.
- Układ regulacji oparty o liniowy ESO pozostaje stabilny jeśli w obiekcie pojawi się luz mechaniczny (badano wartości do 10 stopni).
- Pojawienie się momentu obciążenia powoduje niwelowanie luzu co przekłada się na lepsze właściwości układu regulacji.
- Z uwagi na strukturę układu regulacji dla sygnałów zadanych innych niż wartość stała pojawia się uchyb w stanie ustalonym.